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On the existence of monotonic fronts for a class of physical 
problems described by the equation Xw” + w’ = f(w) 
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Facultad de Fisica, P Univenidad Cat6lica de Chile, Casilla 306, Santiago 22. Chile 

Received 2 November 1993 

Abstract. We obtain an upper b u n d  on the value of A for which monotonic front solutions 
of the equation Aw” + w’ = f (10) with A =- 0 may exist. 

1. Introduction 

In a variety of physical phenomena the structure of fronts is described by a third-order 
differential equation of the form 

hw”’ + w’ = f(w) A > 0 x E R (1.1) 
where primes denote derivatives with respect to x, f is a positive and continuous function 
for w E (-1, 1) and such that f(-1) = f(1) = 0. For example, equation (1.1) with 
f(w) = cos(xw/2) and A small arises in the geometric model of crystal growth [ l ,  21. A 
more complicated version of the geometric model of crystal growth is given by equation 
(1.1) with f ( w )  = cos(xw/Z)/(l + 01cos(2irw)), where 0 e 01 e 1 represents crystalline 
anisotropy. Traveling wave solutions of the Kuramotc-Sivashinsky equation which arises 
in the study of reaction-diffusion systems [3], flame propagation [4], and others, obey the 
above equation with f ( w )  = 1 - wz. In this latter caSe A = (c/2)’ where c is the speed of 
the travelling wave. Our aim in this paper is to determine generic bounds on A for which 
equation (1.1) has no monotonic fronts; i.e. has no solutions w withw’ > 0 and such that 
limx+-m w = -1, lims4w w = 1. For the case f (w) = 1 - wz bounds of this sort were 
found by Toland [5]. In fact, he proved that for A 2 thereis no monotonic solution of (1.1) 
on B. Although Toland’s bound is certainly correct, for the case in question it is now known 
that for all A > 0 there is no monotonic solution of (1.1) (see, e.g., [6,7]). For the equation 
describing needle crystals (i.e. where f(w) = cos(irw/2)) it has also been shown that no 
monotonic solutions exist [8,9] .  In spite of these negative results, there are explicit examples 
of functions f for which monotonic fronts do exist. This is the case for the modified equation 
of the geometric model of crystal growth (i.e. for f ( w )  = cos(nw/2)/[1 + 01 cos(2xw)l) 
for a discrete set of values of the crystal anisotropy parameter 01 [lo]. A simpler example 
for which monotonic fronts exist is given by f(w) = i (1  - wz)(l - 4 + BAw2), for which 
the front w(x) = (e” - 1)/(1 + e ^ )  = tanh(5) is monotonic, satisfies equation (1.1) for 
this f and also the boundary values limx2*m w = fl. Moreover, one can conshvct many 
other explicit examples of f’s for which equation (1.1) exhibits monotonic fronts. ~ Here 
we prove a generic bound on the values of A for which equation (1.1) together with the 
boundary values lim,,+, w = *I does not have monotonic solutions. Our main result is 
as follows. 
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Theorem If 
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1 
h > 0 , 2 2 S S ( l ,  f ( z ) ( l  -r')dt)-' (1.2). 

then there is no solution of 

hw" + w' = f (w) 

satisfying limz-,*m w = +1 and w' > 0 on R. 

Several remarks are in order concerning this result. First, for the case considered by 
Toland, that is for f(w) = 1 - w', our bound is slightly better than his ( A T ~ I ~ , ~  = 8 x 
0.222, Aher. = 0.201 ), although we know that both of these bounds are not relevant because 
of the non-existence results of Jones et a1 [6] (see. also [7, 111). Second, our bound is not 
optimal, in the sense that there is no f for which the inequality (1.2) is saturated (i.e. satisfied 
as an inequality). Third, the methods used here to prove bounds on A for which there are no 
monotonic solutions can easily be extended to treat more general equations. In particular 
they have been used by us to determine bounds on the speed of monotonic travelling fronts 
of a Kuramotdivashinsky equation with dispersion [12J. We do not attempt to prove the 
existence of fronts, which requires an entirely different approach 151. The rest of the paper 
is organized as follows: in section 2 we prove the bound and in section 3 we apply our 
bound to several examples. 

2. Proof of the bound on X 

Here we are only concerned about monotonic solutions w(x) of equation (1) satisfying 
w(x) + -1 as x + -w and w(x)  + +1 as x + +co. In view of this, it is convenient 
to consider the dependence of tbe independent variable x as a function of w, or rather the 
dependence of u(w) G (&jaw)-' as a function of w. In fact, for a monotonic solution 
w(x) of (l), x(w) increases monotonically from -m to +co as w goes from -1 to +l. 
Thus, the function u(w) is non-negative and vanishes at both ends. Since the original 
equation (1.1) is antonomons, one can rewrite it as a second-order equation for u(w). In 
terms of U, dw/dx = U, d2wjdx2 = udu/dw and d3w/dx3 = $udz(u2)/dwz. Therefore, 
equation (1.1) can be rewritten as 

1 d2u2 
-k~- + U  = f(w) 
2 dw2 

w E ( -1 , I )  

together with theboundary condition U(-1) = u(+l) = 0. This is a nonlinear second-order 
differential equation for u(w) that is singular at both end-points. 

In order to prove the desired bound on A, we multiply (2.1) by g(w)/u, where g(w) 
is any continuous function such that g(w) is twice differentiable, g(=kl) = 0 and g(w) 
is concave (i.e. -g" > 0), therefore g is positive. A specific choice for g will be made 
shortly. Hence we have 

We now integrate (2.2) in w between -1 and 1. After integrating the first term on the 
left-hand side by parts we obtain 

1 5 1' g"u2dw + ll g(w)dw = 
2 -I 
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Note that when integrating by parts we have used the fact that both g and U vanish at the 
end-points. Let h = -gN. Since g is concave, h is positive. From (2.3) we have 

2 

I lI g(w) dw = (%g(w) + (2.4) 

Since f ,  g and h are positive in (-1, I) and A is a positive constant, for any fixed w we 
have 

(just minimize the right-hand side as a function of U for U E (0, +CO)). From (2.4) and 
(2.5) we have 

Al l3  < ; 2 /"I g(w)dw( /"'(fg)Z/3h'/3dw)-'. 
3 J - I  \J-I 1 

The bound on A given by (2.6) holds for any function g twice differentiable in (-1, 1) such 
that h = -g" 2 0 and g(f1) = 0. If A is larger than the right-hand side of (2.6) for fixed 
f and any such g, equation (I)  cannot have monotonic fronts. For explicit examples of 
f ' s  one can use directly (2.6) to derive upper bounds on A. However, here we would like 
to express a bound on A solely in terms o f f  (i.e. in explicit generic bound on A). It is 
for this reason that we will pick a specific g in order to prove our main result. So choose 
g in such a way that h =~ -g" = f in (-1, 1)  and g(f1) = 0. Such a g can be written 
explicitly in terms o f f  as 

I l, K ( s ,  t ) f ( t )dr  (2.7) 

with K(s ,  t )  = i(s + 1)(1- t )  for -1 < s <.c and K ( s ,  t )  = $(l + t ) ( l  - s) for t < s < I .  
With this particular choice of g, the bound (2.6) can be expressed as 

and integrating the denominator of the right-hand side of (2.8) by parts we get 

Writing g = @I5, the denominator f, (g')zg-lfi dw becomes J +". Therefore 

(2.9) 

(2.10) 

Let Z denote the maximum of the quotient R(Q) = (s!, Q6/5d~)5/3/J!l(Q')'dw taken 
over all functions Q E C1(-l, 1)  ( to be precise, the maximum of the quotient is taken 
over all functions Q in the Sobolev space Hd(-l ,  1) ). Clearly, R(Q) is homogeneous in 
Q. Then equation (2.10) may be written as 

Since R(@) < I ,  and using g = @I5, equation (2.1 1) implies 

(2.11) 

(2.12) 
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It is not difficult to,show that the maximum I of R ( @ )  in H;(-l, 1) exists and that the 
corresponding maximizing function is unique up to a multiplicative constant. The maximum 
in Hd (-1,l) is attained by a function @ being in fact Cm in the open interval and satisfying 
the following differential equation: 

-$I‘ = in (-],I) (2.13) 

together with the boundary conditions @(-1) = @(I) = 0. One can solve numerically 
(2.13) and evaluate I = (J-, dw)5/3/fI $(-@”) dw = (Jy1 @6/5)2/3. The numerical 
value of I is approximately 0.5548. From equation (2.12) we have 

R D Benguria and M C Depassier 

1 

(2.14) 

I Using (2.7) we can evaluate J-, gdw explicitly in terms of f. We have 

J!,gdw = ./-,S-,K(w,t)f(t)dtdw = ~ ! l f ( t ) ( ~ ~ l K ( w , ~ ) d w + ~ ’ K ( w , t ) d w ] d t  = 
I 1  

1 1  J-, f(r)(l - t2) dr so finally we get our bound 

I -2 
h < 0.2288[~,  f(t)(l - r 2 )  dt] . (2.15) 

Hence if, for a given f, h is larger than the right-hand side of (2.13), equation (1.1) has no 
monotonic fronts. 

3. Applications 

We first consider the equation for needle crystals including anisotropy. This corresponds to 
our equation (1.1) with 

f(w)=cos(~w/2)/(1+acos(2nw)) ~ o<ff < I .  (3.1) 
In this case it has been shown [lo] that monotonic fronts exist for a discrete set of values 
of LY and small 1. This f vanishes at w = f l  and, for 0 e (Y < 1, f is positive so our 
theorem applies here. 

If we insert f(w) given by (3.1) in equation (2.14) we get an upper bound A,@) on 
the possible values of h for which one could have monotonic fronts. This function i,(or) 
is shown in figure 1. Note that &(a) is decreasing, h,(O) = 0.214 and &(I) = 0. 

022 - 

0.18 - 

0.1 4 - 

0.08 - 

0.04 - 

0.0 0.1 0.2 0.3 0.4 O S  0.6 -0.7 0.8 0.9 ,1.0 
a 

Figure 1. Upper bound on the value 
, ,. of . .. A ... .. for .. ,, . the , ,.. , ,. existence ,.. ,, .., , . ,, , . , . ,, of , , ,?o?otonic, 
fronts in the geometric model of 
crystal growth with misotropy. 
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Figure 2. The solid line depicts the 
upper bound on the value of 1 for 
the existence of fmnts of the exactly 
solvable example. The doued line 
corresponds to the values for which 
it is known that there is a solution. 

As a second example we consider an exactly solvable model given by equation (1.1) 

(3.2) 

with 

f ( w )  = 2(' 1 - w2)(1 - f + +J2) 0 < a  < 2 .  

In this case, monotonic fronts exist when A = a. In fact the solution of equation (1.1) with 
f given by (3.2) and A ,= (Y is given by w(x)  = tanh($). 'The function f~ given by (3.2) 
vanishes at w = fl, and for 0 < CY e 2 it is positive, so again in this case OUT theorem 
applies. Inserting (3.2) in (2.14) we get an explicit bound A,@) given by 

39.2165 
(7 - 2a)Z ' Au(a) = 

In figure 2 we have plotted this bound. The solid line corresponds to X,(a) while the dotted 
line conesponds to A =a, the exact value for which it is known that there is a front. 

As a final remark, we wish to point out that, if in a particular case a better bound is 
sought, one may go back to equation (2.6) and find the best g for the problem. The method 
presented here can also be used in equations of the form Aw"' + w" + w' = ~ ( u J ) ,  with 
A > 0, f(iz1) = 0 and f positive and continuous between -1 and 1. In order to get a 
bound for this equation an adequate choice for the trial function g has to be made. The 
choice depends on f. Some results for f ( w )  = 1 - wz aie given in [12]. 
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